
handle: 11250/2719910 , 10397/88572
Accurate streamflow prediction is essential in reservoir management, flood control, and operation of irrigation networks. In this study, the deterministic and stochastic components of modeling are considered simultaneously. Two nonlinear time series models are developed based on autoregressive conditional heteroscedasticity and self-exciting threshold autoregressive methods integrated with the gene expression programming. The data of four stations from four different rivers from 1971 to 2010 are investigated. For examining the reliability and accuracy of the proposed hybrid models, three evaluation criteria, namely the R2, RMSE, and MAE, and several visual plots were used. Performance comparison of the hybrid models revealed that the accuracy of the SETAR-type models in terms of R2 performed better than the ARCH-type models for Daryan (0.99), Germezigol (0.99), Ligvan (0.97), and Saeedabad (0.98) at the validation stage. Overall, prediction results showed that a combination of the SETAR with the GEP model performs better than ARCH-based GEP models for the prediction of the monthly streamflow. Abbreviations: ADF = Augmented Dickey-Fuller; AIC = Akaike Information Criterion; ANFIS = Adaptive Neuro-Fuzzy Inference System; ANNs = Artificial Neural Networks; AR = Autoregressive Models; ARIMA = Autoregressive Integrated Moving Average; ARCH = Autoregressive Conditional Heteroscedasticity; ATAR = Aggregation Operator Based TAR; BL = Bilinear Models; BNN = Bayesian Neural Network; CEEMD = Complete Ensemble Empirical Mode Decomposition; DDM =Data-Driven Model; GA = Genetic Algorithm; GARCH = Generalized Autoregressive Conditional Heteroscedasticity; GEP = Gene Expression Programming; KNN = K-Nearest Neighbors; KPSS = Kwiatkowski–Phillips–Schmidt–Shin; LMR = Linear and Multilinear Regressions; LR = Likelihood Ratio; LSTAR = Logistic STAR; MAE = Mean Absolute Error; PACF = Partial Autocorrelation Function; PARCH = Partial Autoregressive Conditional Heteroscedasticity; R2 = Coefficient of Determination; RMSE = Root Mean Square Error; RNNs = Recurrent Neural Networks; SETARMA = Self-Exciting Threshold Autoregressive Moving Average; SETAR = Self-Exciting Threshold Autoregressive; STAR = Smooth Transition AR; SVR = Support Vector Regression; TAR = Threshold Autoregressive; TARMA = Threshold Autoregressive Moving Average; ULB = Urmia Lake Basin; VMD = Variational Mode Decomposition; WT = Wavelet Transforms
Stochastic and deterministic, streamflow modeling, integrated hybrid models, stochastic and deterministic, Nonlinear time series models, Engineering (General). Civil engineering (General), Integrated hybrid models, Streamflow modeling, gene expression programming, Gene expression programming, nonlinear time series models, urmia lake basin, TA1-2040, Urmia lake basin
Stochastic and deterministic, streamflow modeling, integrated hybrid models, stochastic and deterministic, Nonlinear time series models, Engineering (General). Civil engineering (General), Integrated hybrid models, Streamflow modeling, gene expression programming, Gene expression programming, nonlinear time series models, urmia lake basin, TA1-2040, Urmia lake basin
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
