Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Physicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Physics
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Medical Physics
Article . 2021
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ensemble U‐net‐based method for fully automated detection and segmentation of renal masses on computed tomography images

Authors: Zabihollahy, Fatemeh; Schieda, Nicola; Krishna, Satheesh; Ukwatta, Eranga;

Ensemble U‐net‐based method for fully automated detection and segmentation of renal masses on computed tomography images

Abstract

PurposeDetection and accurate localization of renal masses (RM) are important steps toward future potential classification of benign vs malignant RM. A fully automated algorithm for detection and localization of RM may eliminate the observer variability in the clinical workflow.MethodIn this paper, we describe a fully automated methodology for accurate detection and segmentation of RM from contrast‐enhanced computed tomography (CECT) images. We first determine the boundaries of the kidneys on the CECT images utilizing a convolutional neural network‐based method to be used as a region of interest to search for RM. We then employ a homogenous U‐Net‐based ensemble learning model to identify and delineate RM. We used an institutional dataset comprised of CECT images in 315 patients to train and evaluate the proposed method. We compared results of our method to those of three‐dimensional (3D) U‐Net for RM localization and further evaluated our algorithm using the kidney tumor segmentation (KiTS19) challenge dataset.ResultsThe developed algorithm reported a Dice similarity coefficient (DSC) of 95.79% ± 5.16% and 96.25 ± 3.37 (mean ± standard deviation) for segmentation accuracy of kidney boundary from 125 and 60 test images from institutional and KiTS19 datasets, respectively. Using our method, RM were detected in 125 and 52 test cases, which corresponds to 100% and 86.67% sensitivity at patient level in institutional and KiTS19 test images. Our ensemble method for RM localization yielded a mean DSC of 88.65% ± 7.31% and 87.91% ± 6.82% on the institutional and KiTS19 test datasets, respectively. The mean DSC for RM delineation from CECT institutional test images using 3D U‐Net was 85.95% ± 1.46%.ConclusionWe describe a method for automated localization of RM using CECT images. Our results are important in terms of clinical perspective as fully automated detection of RM is a fundamental step for further diagnosis of cystic vs solid RM and eventually benign vs malignant solid RM, that has not been reported previously.

Keywords

Image Processing, Computer-Assisted, Humans, Neural Networks, Computer, Tomography, X-Ray Computed, Algorithms, Kidney Neoplasms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!