Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Maximum Likelihood Estimation Based Complex-Valued Robust Chinese Remainder Theorem and Its Fast Algorithm

Authors: Li, Xiaoping; Sun, Shiyang; Liao, Qunying; Xia, Xiang-Gen;

Maximum Likelihood Estimation Based Complex-Valued Robust Chinese Remainder Theorem and Its Fast Algorithm

Abstract

Recently, a multi-channel self-reset analog-to-digital converter (ADC) system with complex-valued moduli has been proposed. This system enables the recovery of high dynamic range complex-valued bandlimited signals at low sampling rates via the Chinese remainder theorem (CRT). In this paper, we investigate complex-valued CRT (C-CRT) with erroneous remainders, where the errors follow wrapped complex Gaussian distributions. Based on the existing real-valued CRT utilizing maximum likelihood estimation (MLE), we propose a fast MLE-based C-CRT (MLE C-CRT). The proposed algorithm requires only $2L$ searches to obtain the optimal estimate of the common remainder, where $L$ is the number of moduli. Once the common remainder is estimated, the complex number can be determined using the C-CRT. Furthermore, we obtain a necessary and sufficient condition for the fast MLE C-CRT to achieve robust estimation. Finally, we apply the proposed algorithm to ADCs. The results demonstrate that the proposed algorithm outperforms the existing methods.

22 pages, 18 figures

Keywords

Signal Processing (eess.SP), Signal Processing, FOS: Electrical engineering, electronic engineering, information engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green