
arXiv: 2503.18625
Recently, a multi-channel self-reset analog-to-digital converter (ADC) system with complex-valued moduli has been proposed. This system enables the recovery of high dynamic range complex-valued bandlimited signals at low sampling rates via the Chinese remainder theorem (CRT). In this paper, we investigate complex-valued CRT (C-CRT) with erroneous remainders, where the errors follow wrapped complex Gaussian distributions. Based on the existing real-valued CRT utilizing maximum likelihood estimation (MLE), we propose a fast MLE-based C-CRT (MLE C-CRT). The proposed algorithm requires only $2L$ searches to obtain the optimal estimate of the common remainder, where $L$ is the number of moduli. Once the common remainder is estimated, the complex number can be determined using the C-CRT. Furthermore, we obtain a necessary and sufficient condition for the fast MLE C-CRT to achieve robust estimation. Finally, we apply the proposed algorithm to ADCs. The results demonstrate that the proposed algorithm outperforms the existing methods.
22 pages, 18 figures
Signal Processing (eess.SP), Signal Processing, FOS: Electrical engineering, electronic engineering, information engineering
Signal Processing (eess.SP), Signal Processing, FOS: Electrical engineering, electronic engineering, information engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
