Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of the performance prediction algorithms for cloud services

Authors: Kropachev, Artemii V.; Usov, Aleksey Ye.; Gorshunov, Roman A.; Zuev, Denis O.;

Development of the performance prediction algorithms for cloud services

Abstract

Main stages of data center service performance prediction were discussed, specifically data monitoring and gathering, calculation and prediction of key indexes and performance index prediction. It was proposed to build data center service performance prediction algorithm based on an analysis of the service transactions index, service resource occupancy index and service performance index. Prediction of the indexes is based on chaotic time series analysis that was used to estimate service transactions index time series trend, the radar chart method to calculate the service resource occupancy index value and weighted average method to calculate service performance index. For performance prediction, it is proposed to use a fuzzy judgment matrix with the service transactions index and service resource occupancy index as input values. It was taken into consideration that service transactions index is usually represented by nonlinear time series and thus the index time series parameters had to be predicted by chaos theory and for the calculation of this index, the estimation procedure of Lyapunov exponent value can be used. The radar chart demonstrates service resource occupancy index estimation of shared storage, mobile storage, memory, computational capability and network bandwidth. The prediction technique was based on the fuzzy nearness category that use input values of transactions index and dynamic changes of the service resource occupancy index.

Keywords

service performance index, service transactions index, service resource occupancy index, QA75.5-76.95, data center, центр обработки данных; коэффициент транзакции; коэффициент использования машинных ресурсов; коэффициент производительности сервиса; матрица нечетких суждений; экспонента Ляпунова; радарная диаграмма, radar chart, Electronic computers. Computer science, центр обробки даних; коефіцієнт транзакції; коефіцієнт використання машинних ресурсів; коефіцієнт продуктивності сервісу; матриця нечітких суджень; експонента Ляпунова; радарна діаграма, data center; service transactions index; service resource occupancy index; service performance index; fuzzy judgment matrix; Lyapunov exponent; radar chart, fuzzy judgment matrix, Lyapunov exponent

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold