Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2514/6.2020...
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of fast GPU-based algorithms for jet-surface interaction noise calculations

Authors: Afsar, M. Z.; Stirrat, S. A.; Kokkinakis, I. W.;

Investigation of fast GPU-based algorithms for jet-surface interaction noise calculations

Abstract

The canonical problem of a jet flow interacting with a plate positioned parallel to the level curves of the streamwise mean flow has received much attention in Aero-acoustics research com- munity as a representation of jet installation effects. Rapid-distortion theory (RDT) modeling of this scenario involves relating an upstream convected quantity that serves as the problem in- put to measureable turbulence and then determine the far field radiated sound, as the response to this. The latter is found by solving the resulting Wiener-Hopf problem on a discontinuous surface subject to a gust-induced boundary condition across the vortex sheet shed of the trail- ing edge. Goldstein, Leib & Afsar (J. Fluid Mech., Vol. 881, pp. 551-584, 2019) find that the acoustic spectrum for the round jet scattering problem is given a formula that involves the computation of 4 integrals. Two of these are required to be computed at each point of the two-dimensional domain at a given frequency. Additionally, nested within these integrals is a Fourier transform of the turbulence correlation R22. In GLA19 this Fourier transform was found analytically however for different approximations of R22 this isn’t possible and it needs to be found numerically. Computation of this form of the solution is naturally computationally expensive on standard desktop computers. In this paper we therefore devise and investigate various algorithms in which the integrals are solved numerically on a GPU card. In gen- eral our calculations using the GPU algorithm show considerable reduction in computational time thus making this approach a viable option for design/optimization calculations aimed at characterizing the acoustic signature.

Related Organizations
Keywords

TJ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green