Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/tcss.2...
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Emotion Separation and Recognition From a Facial Expression by Generating the Poker Face With Vision Transformers

Authors: Jia Li 0013; Jiantao Nie; Dan Guo 0001; Richang Hong; Meng Wang 0001;

Emotion Separation and Recognition From a Facial Expression by Generating the Poker Face With Vision Transformers

Abstract

Representation learning and feature disentanglement have garnered significant research interest in the field of facial expression recognition (FER). The inherent ambiguity of emotion labels poses challenges for conventional supervised representation learning methods. Moreover, directly learning the mapping from a facial expression image to an emotion label lacks explicit supervision signals for capturing fine-grained facial features. In this paper, we propose a novel FER model, named Poker Face Vision Transformer or PF-ViT, to address these challenges. PF-ViT aims to separate and recognize the disturbance-agnostic emotion from a static facial image via generating its corresponding poker face, without the need for paired images. Inspired by the Facial Action Coding System, we regard an expressive face as the combined result of a set of facial muscle movements on one's poker face (i.e., an emotionless face). PF-ViT utilizes vanilla Vision Transformers, and its components are firstly pre-trained as Masked Autoencoders on a large facial expression dataset without emotion labels, yielding excellent representations. Subsequently, we train PF-ViT using a GAN framework. During training, the auxiliary task of poke face generation promotes the disentanglement between emotional and emotion-irrelevant components, guiding the FER model to holistically capture discriminative facial details. Quantitative and qualitative results demonstrate the effectiveness of our method, surpassing the state-of-the-art methods on four popular FER datasets.

This paper has been accepted for publication in the IEEE Transactions on Computational Social Systems (TCSS)

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Top 10%
Top 10%
Green