Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

"Semi-Asynchronous": A New Scheduler for Robot Based Computing Systems

Authors: Cicerone, Serafino; Di Stefano, Gabriele; Navarra, Alfredo;

"Semi-Asynchronous": A New Scheduler for Robot Based Computing Systems

Abstract

The study of mobile entities, called robots, that have to accomplish global tasks on the basis of local information has attracted many researchers. A well-known scenario is that in which robots operate in Look-Compute-Move (LCM) computational cycles. In each cycle, a robot takes a snapshot of the environment (Look phase), then executes a distributed algorithm on the basis of the obtained snapshot (Compute phase), and finally moves toward a desired destination, if any (Move phase). LCM cycles might be subject to different temporal constraints dictated by the considered schedule. The classic models for the activation and synchronization of mobile robots are the fully-synchronous, semi-synchronous, and asynchronous models. The three models have been shown to constitute a hierarchy, that is fully-synchronous robots can accomplish more tasks than semi-synchronous robots that in turn can accomplish more tasks than asynchronous robots. The computational power of robots based on the different models has been extensively investigated, revealing a big gap between asynchronous robots and the other models. For many problems it is still not known whether the synchronization is crucial for designing resolution algorithms or not. In order to better understand the asynchronous case, here we propose further models referred to as semi-asynchronous, showing that for robots moving on graphs, semi-synchronous robots can accomplish more tasks than semi-asynchronous robots that in turn can accomplish more tasks than asynchronous robots. Whether the same strict hierarchy also holds for robots moving on the Euclidean plane remains open, however our investigation reveals interesting consequences that may help in better characterizing the computational power of robots with respect to the different synchronization models.

Country
Italy
Keywords

Distributed Algorithms; Mobile Robots; Obliviousness; Synchronization; Software; Hardware and Architecture; Computer Networks and Communications

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!