
A multiprocessor scheduling algorithm named U-EDF, was presented in [1] for the scheduling of periodic tasks with implicit deadlines. It was claimed that U-EDF is optimal for periodic tasks (i.e., it can meet all deadlines of every schedulable task set) and extensive simulations showed a drastic improvement in the number of task preemptions and migrations in comparison to state-of-the-art optimal algorithms. However, there was no proof of its optimality and U-EDF was not designed to schedule sporadic tasks. In this work, we propose a generalization of U-EDF for the scheduling of sporadic tasks with implicit deadlines, and we prove its optimality. Contrarily to all other existing optimal multiprocessor scheduling algorithms for sporadic tasks, U-EDF is not based on the fairness property. Instead, it extends the main principles of EDF so that it achieves optimality while benefiting from a substantial reduction in the number of preemptions and migrations.
Informatique générale
Informatique générale
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
