Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Briefings in Bioinfo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Briefings in Bioinformatics
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

EMcnv: enhancing CNV detection performance through ensemble strategies with heterogeneous meta-graph neural networks

Authors: Xuwen Wang; Zhili Chang; Yuqian Liu; Shenjie Wang; Xiaoyan Zhu; Yang Shao; Jiayin Wang;

EMcnv: enhancing CNV detection performance through ensemble strategies with heterogeneous meta-graph neural networks

Abstract

Abstract Copy number variation (CNV) is a crucial biomarker for many complex traits and diseases. Although numerous CNV detection tools are available, no single method consistently achieves optimal performance across diverse sequencing samples, as each tool has distinct advantages and limitations. Therefore, integrating the strengths of these tools to improve CNV detection accuracy is both a promising strategy and a significant challenge. To address this, we propose EMcnv, a novel deep ensemble framework based on meta-learning. EMcnv combines multiple CNV detection strategies through a three-step approach: (i) leveraging meta-learning and meta-path heterogeneous graphs, employing Relational Graph Convolutional Networks as a specific model within the Heterogeneous Graph Neural Networks framework to develop a probabilistic weight meta-model that ensembles various CNV detection strategies; (ii) assigning probabilistic weights to calls from different CNV detection tools and aggregating them into weighted CNV regions (CNVRs); (iii) refining Copy number variations based on weighted CNVRs. We conducted comprehensive experiments on both simulated and real sequencing data using benchmark datasets. The results demonstrate that EMcnv significantly outperforms popular existing methods, underscoring its superiority and importance in CNV detection. To support further research, the source code is available for academic use at https://github.com/Sherwin-xjtu/EMcnv.

Related Organizations
Keywords

DNA Copy Number Variations, Problem Solving Protocol, Humans, Computational Biology, Neural Networks, Computer, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold