Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://espace.libra...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.14264/uql.2...
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shared memory parallel computing procedures for nonlinear dynamic analysis of super high rise buildings

Authors: Shaojun Fu; Zheng He; Zhiquan Li; Xiang Tu; Qian Tao;

Shared memory parallel computing procedures for nonlinear dynamic analysis of super high rise buildings

Abstract

The proposed parallel state transformation procedures (PSTP) of fiber beam-column elements and multi-layered shell elements, combined with the parallel factorization of Jacobian (PF), are incorporated into a finite element program. In PSTP, elements are classified into different levels of workload prior to state determination in order to balance workload among different threads. In PF, the multi-threaded version of OpenBLAS is adopted to compute super-nodes. A case study on four super high-rise buildings, i.e. S1~S4, has demonstrated that the combination of PSTP and PF does not have any observable influence on computational accuracy. As number of elements and DOFs increases, the ratio of time consumed in the formation of the Jacobian to that consumed in the solution of algebraic equations tends to decrease. The introduction of parallel solver can yield a substantial reduction in computational cost. Combination of PSTP and PF can give rise to a further significant reduction. The acceleration ratios associated with PSTP do not exhibit a significant decrease as PGA level increases. Even PGA level is equal to 2.0g, PSTP still can result in acceleration ratios of 2.56 and 1.92 for S1 and S4, respectively. It is verified that it is more effective to accelerate analysis by reducing the time spent in solving algebraic equations rather than reducing that spent in the formation of the Jacobian for super high-rise buildings.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Average