Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On fully dynamic constant-factor approximation algorithms for clustering problems

Authors: Hendrik Fichtenberger; Monika Henzinger; Andreas Wiese;

On fully dynamic constant-factor approximation algorithms for clustering problems

Abstract

Clustering is an important task with applications in many fields of computer science. We study the fully dynamic setting in which we want to maintain good clusters efficiently when input points (from a metric space) can be inserted and deleted. Many clustering problems are $\mathsf{APX}$-hard but admit polynomial time $O(1)$-approximation algorithms. Thus, it is a natural question whether we can maintain $O(1)$-approximate solutions for them in subpolynomial update time, against adaptive and oblivious adversaries. Only a few results are known that give partial answers to this question. There are dynamic algorithms for $k$-center, $k$-means, and $k$-median that maintain constant factor approximations in expected $\tilde{O}(k^{2})$ update time against an oblivious adversary. However, for these problems there are no algorithms known with an update time that is subpolynomial in $k$, and against an adaptive adversary there are even no (non-trivial) dynamic algorithms known at all. In this paper, we complete the picture of the question above for all these clustering problems. 1. We show that there is no fully dynamic $O(1)$-approximation algorithm for any of the classic clustering problems above with an update time in $n^{o(1)}h(k)$ against an adaptive adversary, for an arbitrary function $h$. 2. We give a lower bound of $��(k)$ on the update time for each of the above problems, even against an oblivious adversary. 3. We give the first $O(1)$-approximate fully dynamic algorithms for $k$-sum-of-radii and for $k$-sum-of-diameters with expected update time of $\tilde{O}(k^{O(1)})$ against an oblivious adversary. 4. Finally, for $k$-center we present a fully dynamic $(6+��)$-approximation algorithm with an expected update time of $\tilde{O}(k)$ against an oblivious adversary.

Keywords

Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Computer Science - Computational Geometry, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green