
arXiv: cs/0609090
Many implementations for decoding LDPC codes are based on the (normalized/offset) min-sum algorithm due to its satisfactory performance and simplicity in operations. Usually, each iteration of the min-sum algorithm contains two scans, the horizontal scan and the vertical scan. This paper presents a single-scan version of the min-sum algorithm to speed up the decoding process. It can also reduce memory usage or wiring because it only needs the addressing from check nodes to variable nodes while the original min-sum algorithm requires that addressing plus the addressing from variable nodes to check nodes. To cut down memory usage or wiring further, another version of the single-scan min-sum algorithm is presented where the messages of the algorithm are represented by single bit values instead of using fixed point ones. The software implementation has shown that the single-scan min-sum algorithm is more than twice as fast as the original min-sum algorithm.
Accepted by IEEE Information Theory Workshop, Chengdu, China, 2006
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
