Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Informati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Information and Intelligence
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DLE-YOLO: An efficient object detection algorithm with dual-branch lightweight excitation network

Authors: Peitao Cheng; Xuanjiao Lei; Haoran Chen; Xiumei Wang;

DLE-YOLO: An efficient object detection algorithm with dual-branch lightweight excitation network

Abstract

As a computer vision task, object detection algorithms can be applied to various real-world scenarios. However, efficient algorithms often come with a large number of parameters and high computational complexity. To meet the demand for high-performance object detection algorithms on mobile devices and embedded devices with limited computational resources, we propose a new lightweight object detection algorithm called DLE-YOLO. Firstly, we design a novel backbone called dual-branch lightweight excitation network (DLEN) for feature extraction, which is mainly constructed by dual-branch lightweight excitation units (DLEU). DLEU is stacked with different numbers of dual-branch lightweight excitation blocks (DLEB), which can extract comprehensive features and integrate information between different channels of features. Secondly, in order to enhance the network to capture key feature information in the regions of interest, the attention model HS-coordinate attention (HS-CA) is introduced into the network. Thirdly, the localization loss utilizes SIoU loss to further optimize the accuracy of the bounding box. Our method achieves a mAP value of 46.0% on the MS-COCO dataset, which is a 2% mAP improvement compared to the baseline YOLOv5-m, while bringing a 19.3% reduction in parameter count and a 12.9% decrease in GFLOPs. Furthermore, our method outperforms some advanced lightweight object detection algorithms, validating the effectiveness of our approach.

Keywords

Object detection, Lightweight network, Attention mechanism, Information technology, T58.5-58.64, Loss function

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold