
arXiv: 2010.02379
We propose a theoretically-efficient and practical parallel batch-dynamic data structure for the closest pair problem. Our solution is based on a serial dynamic closest pair data structure by Golin et al., and supports batches of insertions and deletions in parallel. For a data set of size $n$, our data structure supports a batch of insertions or deletions of size $m$ in $O(m(1+\log ((n+m)/m)))$ expected work and $O(\log (n+m)\log^*(n+m))$ depth with high probability, and takes linear space. The key techniques for achieving these bounds are a new work-efficient parallel batch-dynamic binary heap, and careful management of the computation across sets of points to minimize work and depth. We provide an optimized multicore implementation of our data structure using dynamic hash tables, parallel heaps, and dynamic $k$-d trees. Our experiments on a variety of synthetic and real-world data sets show that it achieves a parallel speedup of up to 38.57x (15.10x on average) on 48 cores with hyper-threading. In addition, we also implement and compare four parallel algorithms for static closest pair problem, for which we are not aware of any existing practical implementations. On 48 cores with hyper-threading, the static algorithms achieve up to 51.45x (29.42x on average) speedup, and Rabin's algorithm performs the best on average. Comparing our dynamic algorithm to the fastest static algorithm, we find that it is advantageous to use the dynamic algorithm for batch sizes of up to 20\% of the data set. As far as we know, our work is the first to experimentally evaluate parallel closest pair algorithms, in both the static and the dynamic settings.
Computational Geometry (cs.CG), FOS: Computer and information sciences, Closest Pair, Experimental Algorithms, Dynamic Algorithms, 004, Parallel Algorithms, Computer Science - Data Structures and Algorithms, Computer Science - Computational Geometry, Data Structures and Algorithms (cs.DS), F.2.2, ddc: ddc:004
Computational Geometry (cs.CG), FOS: Computer and information sciences, Closest Pair, Experimental Algorithms, Dynamic Algorithms, 004, Parallel Algorithms, Computer Science - Data Structures and Algorithms, Computer Science - Computational Geometry, Data Structures and Algorithms (cs.DS), F.2.2, ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
