
arXiv: 2502.19725
Industrial Control Systems (ICS) rely heavily on Programmable Logic Controllers (PLCs) to manage critical infrastructure, yet analyzing PLC executables remains challenging due to diverse proprietary compilers and limited access to source code. To bridge this gap, we introduce PLC-BEAD, a comprehensive dataset containing 2431 compiled binaries from 700+ PLC programs across four major industrial compilers (CoDeSys, GEB, OpenPLC-V2, OpenPLC-V3). This novel dataset uniquely pairs each binary with its original Structured Text source code and standardized functionality labels, enabling both binary-level and source-level analysis. We demonstrate the dataset's utility through PLCEmbed, a transformer-based framework for binary code analysis that achieves 93\% accuracy in compiler provenance identification and 42\% accuracy in fine-grained functionality classification across 22 industrial control categories. Through comprehensive ablation studies, we analyze how compiler optimization levels, code patterns, and class distributions influence model performance. We provide detailed documentation of the dataset creation process, labeling taxonomy, and benchmark protocols to ensure reproducibility. Both PLC-BEAD and PLCEmbed are released as open-source resources to foster research in PLC security, reverse engineering, and ICS forensics, establishing new baselines for data-driven approaches to industrial cybersecurity.
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Machine Learning, Machine Learning (cs.LG)
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Machine Learning, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
