Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polynomial time classical versus quantum algorithms for representation theoretic multiplicities

Authors: Panova, Greta;

Polynomial time classical versus quantum algorithms for representation theoretic multiplicities

Abstract

Littlewood-Richardson, Kronecker and plethysm coefficients are fundamental multiplicities of interest in Representation Theory and Algebraic Combinatorics. Determining a combinatorial interpretation for the Kronecker and plethysm coefficients is a major open problem, and prompts the consideration of their computational complexity. Recently it was shown that they behave relatively well with respect to quantum computation, and for some large families there are polynomial time quantum algorithms [Larocca,Havlicek, arXiv:2407.17649] (also [BCGHZ,arXiv:2302.11454]). In this paper we show that for many of those cases the Kronecker and plethysm coefficients can also be computed in polynomial time via classical algorithms, thereby refuting some of the conjectures in [LH24]. This vastly limits the cases in which the desired super-polynomial quantum speedup could be achieved.

20 pages; TQC 2025 proceedings; "Computational Complexity" journal

Keywords

FOS: Computer and information sciences, Quantum Physics, Computational Complexity, Representation Theory, Combinatorics, FOS: Mathematics, FOS: Physical sciences, Combinatorics (math.CO), Computational Complexity (cs.CC), Representation Theory (math.RT), Quantum Physics (quant-ph)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green