
handle: 10481/98137
Decision trees are widely known models in Supervised Machine Learning with efficient inference mechanisms and outstanding interpretability. In this article, we design the implementation of classical Inductive Decision Trees under a quantum computing paradigm, and explore the advantages of Quantum Decision Trees designed in the presence of missing and uncertain data. Our findings extend to quantum ensembles analogous to Decision Forests as a Quantum Machine Learning method to improve the interpretability of a type of variational quantum circuits. Our approach provides an improvement in efficiency in the case of probabilistic inference with respect to the classical counterpart, and a general methodology is designed to address multiple classification tasks with Quantum Machine Learning tools, with a focus on the interpretability of quantum models. The theoretical results are supported by experimental simulations using di erent data sets and state-of-the-art examples.
This article was funded by the project QUANERGY (Ref. TED2021-129360B-I00), Ecological and Digital Transition R&D projects call 2022 by MCIN/AEI/10.13039/501100011033 and European Union NextGeneration EU/PRTR.
Quantum Decision Forests, Quantum Decision Tree, Quantum Machine Learning
Quantum Decision Forests, Quantum Decision Tree, Quantum Machine Learning
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
