Downloads provided by UsageCounts
This article deals with the control design of a dual-spin projectile concept, characterized by highly nonlinear parameter-dependent and coupled dynamics, and subject to uncertainties and actuator saturations. An open-loop nonlinear model stemming from flight mechanics is first developed. It is subsequently linearized and decomposed into a linear parameter-varying system for the roll channel, and a quasi-linear parameter-varying system for the pitch/yaw channels. The obtained models are then used to design gain-scheduled H∞ baseline autopilots, which do not take the saturations into account. As a major contribution of this paper, the saturation nonlinearities are addressed in a second step through anti-windup augmentation. Three anti-windup schemes are proposed, which are evaluated and compared through time-domain simulations and integral quadratic constraints analysis. Finally, complete guided flight scenarios involving a wind disturbance, perturbed launch conditions, or aerodynamic uncertainties, are analyzed by means of nonlinear Monte Carlo simulations to evaluate the improvements brought by the proposed anti-windup compensators.
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Control & Simulation
629, Gain scheduling, Robustness analysis, Anti-windup, Guided projectiles
629, Gain scheduling, Robustness analysis, Anti-windup, Guided projectiles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 15 | |
| downloads | 4 |

Views provided by UsageCounts
Downloads provided by UsageCounts