Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Open Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Journal of the Communications Society
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Revolutionizing FANETs With Reinforcement Learning: Optimized Data Forwarding and Real-Time Adaptability

Authors: Yasir Ibraheem Mohammed; Rosilah Hassan; Mohammad Kamrul Hasan; Shayla Islam; Huda Saleh Abbas; Muhammad Asghar Khan; Muhammad Attique Khan;

Revolutionizing FANETs With Reinforcement Learning: Optimized Data Forwarding and Real-Time Adaptability

Abstract

Uncrewed Aerial Vehicles (UAVs), commonly known as drones, have significantly advanced wireless communication frameworks by enabling the formation of Flying Ad-Hoc Networks (FANETs). FANETs facilitate autonomous collaboration among UAVs through decentralized and self-organizing communication protocols, proving especially effective in dynamic applications such as military surveillance, disaster management, and environmental monitoring. Nevertheless, traditional routing algorithms, initially developed for terrestrial networks, often fail to meet the unique challenges of FANETs, notably their high mobility and frequently changing network topologies. A framework was proposed to address these challenges; this paper formulates a multi-objective optimization problem aimed at optimizing UAV trajectories, enhancing energy efficiency, and maximizing communication range to improve overall data forwarding performance. A Reinforcement Learning (RL)-based agent is created that constantly enhances its decision-making capacity by utilizing real-time feedback and dynamically chooses best forwarding tactics. This work also combines developments in large-scale data collecting from Wireless Sensor Networks (WSNs), using mobile sinks supported by FANETs in conjunction with multi-objective optimization approaches to improve data collecting efficiency greatly. Experimental tests show that the suggested RL-based techniques outperform conventional routing protocols by properly lowering delays and raising the Packet Delivery Ratio (PDR). Moreover, simulation findings show the better scalability and adaptability of RL-enabled UAV networks, stressing its possible use in dynamic real-world situations such as disaster relief operations and environmental monitoring tasks.

Keywords

WSNs, IoT, reinforcement learning, Telecommunication, Data gathering, TK5101-6720, UAVs, Transportation and communications, FANET, HE1-9990

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold