
arXiv: 2508.05020
High-order solvers for compressible flows are vital in scientific applications. Adaptive mesh refinement (AMR) is a key technique for reducing computational cost by concentrating resolution in regions of interest. In this work, we develop an AMR-based numerical solver using Regent, a high-level programming language for the Legion programming model. We address several challenges associated with implementing AMR in Regent. These include dynamic data structures for patch refinement/coarsening, mesh validity enforcement, and reducing task launch overhead via task fusion. Experimental results show that task fusion achieves 18x speedup, while automated GPU kernel generation via simple annotations yields 9.7x speedup for the targeted kernel. We demonstrate our approach through simulations of two canonical compressible flow problems governed by the Euler equations.
Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Mathematical Software, Computational Engineering, Finance, and Science, Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Mathematical Software (cs.MS)
Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Mathematical Software, Computational Engineering, Finance, and Science, Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Mathematical Software (cs.MS)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
