Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Task-Based Programming for Adaptive Mesh Refinement in Compressible Flow Simulations

Authors: Wei, Anjiang; Song, Hang; Hidayetoglu, Mert; Slaughter, Elliott; Lele, Sanjiva K.; Aiken, Alex;

Task-Based Programming for Adaptive Mesh Refinement in Compressible Flow Simulations

Abstract

High-order solvers for compressible flows are vital in scientific applications. Adaptive mesh refinement (AMR) is a key technique for reducing computational cost by concentrating resolution in regions of interest. In this work, we develop an AMR-based numerical solver using Regent, a high-level programming language for the Legion programming model. We address several challenges associated with implementing AMR in Regent. These include dynamic data structures for patch refinement/coarsening, mesh validity enforcement, and reducing task launch overhead via task fusion. Experimental results show that task fusion achieves 18x speedup, while automated GPU kernel generation via simple annotations yields 9.7x speedup for the targeted kernel. We demonstrate our approach through simulations of two canonical compressible flow problems governed by the Euler equations.

Keywords

Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Mathematical Software, Computational Engineering, Finance, and Science, Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Mathematical Software (cs.MS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green