Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Catalysisarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Catalysis
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2025 . Peer-reviewed
Data sources: DIGITAL.CSIC
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MXgap: A MXene Learning Tool for Bandgap Prediction

Authors: Diego Ontiveros; Sergi Vela; Francesc Viñes; Carmen Sousa;

MXgap: A MXene Learning Tool for Bandgap Prediction

Abstract

The increasing demand for clean and renewable energy has intensified the exploration of advanced materials for efficient photocatalysis, particularly for water splitting applications. Among these materials, MXenes, a family of two-dimensional (2D) transition metal carbides and nitrides, have shown great promise. This study leverages machine learning (ML) to address the resource-intensive process of predicting the bandgap of MXenes, which is critical for their photocatalytic performance. Using an extensive data set of 4356 MXene structures, we trained multiple ML models and developed a robust classifier-regressor pipeline that achieves a classification accuracy of 92% and a mean absolute error (MAE) of 0.17 eV for bandgap prediction. This framework, implemented in an open-source Python package, MXgap, has been applied to screen 396 La-based MXenes, identifying six promising candidates with suitable band alignments for water splitting whose optical properties were further explored via optical absorption and solar-to-hydrogen (STH) efficiency. These findings demonstrate the potential of ML to accelerate MXene discovery and optimization for energy applications.

The authors acknowledge financial support from the Spanish Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación (AEI) MCIN/AEI/10.13039/501100011033 and, as appropriate, by “European Union Next Generation EU/PRTR”, through grants PID2021-126076NB-I00 and TED2021-129506B-C22, the unit of excellence María de Maeztu CEX2021-001202-M granted to the IQTCUB, the COST Action IG18234, and the Generalitat de Catalunya 2021SGR00079 grant. The authors also acknowledge the computational resources provided by Consorci de Serveis Universitaris de Catalunya (CSUC), with financial support from Universitat de Barcelona. Also, F.V. thanks the ICREA Academia Award 2023 ref. Ac2216561, and D.O. thanks Universitat de Barcelona for a predoctoral contract (PREDOCS-UB).

Peer reviewed

Keywords

Ensure sustainable consumption and production patterns, Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation, Machine learning, Density functional theory, Water splitting, Photocatalysis, http://metadata.un.org/sdg/3, http://metadata.un.org/sdg/9, Ensure healthy lives and promote well-being for all at all ages, MXenes, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid