Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ISPRS - Internationa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/lagirs...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.60692/pz...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/xg...
Other literature type . 2020
Data sources: Datacite
Copernicus Publications
Other literature type . 2020
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AN UNSUPERVISED SEGMENTATION METHOD FOR REMOTE SENSING IMAGERY BASED ON CONDITIONAL RANDOM FIELDS

طريقة تجزئة غير خاضعة للإشراف لتصوير الاستشعار عن بعد بناءً على الحقول العشوائية الشرطية
Authors: Anderson R. Soares; Thales Sehn Körting; Leila María García Fonseca; Alana Kasahara Neves;

AN UNSUPERVISED SEGMENTATION METHOD FOR REMOTE SENSING IMAGERY BASED ON CONDITIONAL RANDOM FIELDS

Abstract

Abstract. Segmentation is a fundamental problem in image processing and a common operation in Remote Sensing, which has been widely used especially in Geographic Object-Based Image Analysis (GEOBIA). In this paper, we propose a new unsupervised segmentation algorithm based on the Conditional Random Fields (CRF) theory. The method relies on two levels of information: (1) that comes from an unsupervised classification with Fuzzy C-Means algorithm; (2) the 8-connected neighbourhood of a pixel. The algorithm was tested on a WorldView-2 multispectral image, with 2 m of spatial resolution. Results were evaluated using 6 quality measures, and their performance was compared with other image segmentation algorithms that are usually applied by the Remote Sensing community. Results indicate that the proposed algorithm achieved superior overall performance when compared others, despite some over-segmentation.

Keywords

Technology, Atmospheric Science, Artificial intelligence, Scale-space segmentation, Object-Based Analysis, Image Analysis, Pattern recognition (psychology), Feature Extraction, Remote Sensing, Engineering, Segmentation, Segmentation-based object categorization, Multispectral pattern recognition, Minimum spanning tree-based segmentation, Media Technology, Applied optics. Photonics, Multispectral image, Image segmentation, Object-Oriented Analysis, Ecology, T, Remote Sensing in Vegetation Monitoring and Phenology, Engineering (General). Civil engineering (General), Hyperspectral Image Analysis and Classification, Computer science, TA1501-1820, Earth and Planetary Sciences, Applications of Remote Sensing in Geoscience and Agriculture, FOS: Biological sciences, Physical Sciences, Environmental Science, Change detection, Conditional random field, Computer vision, Pixel, TA1-2040

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold