
In recent years image-processing has become a central part of optical inspection and measurement systems. Typically, after measuring the given specimen by utilizing a suitable sensor, image-processing algorithms are used to detect dedicated features such as surface defects. These algorithms are usually designed, optimized, and tested by an image-processing expert according to the task specifications. A methodology (based on genetic programming) is presented to automatically generate, optimize, and test such algorithms without the necessity of an image-processing expert. We also present several examples of inspection tasks to support the concept. For efficiency, an automated multi-scale multi-sensor inspection strategy is employed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
