
Aiming at the difficult problem of dynamic texture feature extraction in complex scenes, this paper proposes a dynamic texture modeling method based on multi-scale convolutional autoencoder. It merges information on multiple scales of convolutional neural networks and uses an attention mechanism to increase the weight of the main channel. Finally, the loss function is optimized by calculating the errors of multiple network levels. We have conducted experiments on the DynTex database. Compared with several other typical dynamic texture feature extraction methods, the dynamic texture reconstructed by this model has the best comprehensive effect. It solves the problems of blur, noise, and residual image in the reconstruction of dynamic texture features. At the same time, the effectiveness of the modeling method is verified.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
