Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PubMed Centralarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
GPS Solutions
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization design of two-layer Walker constellation for LEO navigation augmentation using a dynamic multi-objective differential evolutionary algorithm based on elite guidance

Authors: Zhongliang Deng; Wenxiao Ge; Lu Yin; Shisheng Dai;

Optimization design of two-layer Walker constellation for LEO navigation augmentation using a dynamic multi-objective differential evolutionary algorithm based on elite guidance

Abstract

In recent years, low earth orbit navigation augmentation (LEO-NA) has attracted increasing attention and is expected to become a new addition to global navigation satellite systems (GNSSs). When solving complex constellation design problems, traditional optimization algorithms often fail to achieve satisfactory results and are sensitive to parameter settings. We propose a dynamic multi-objective differential evolutionary algorithm based on elite guidance (DMODE-EG). It can select the evolutionary strategy based on the evolutionary state reflected by elite individuals and dynamically modify evolution parameters. Moreover, to achieve more uniform global coverage, we construct a two-layer Walker constellation model for LEO-NA. Then, we use the DMODE-EG algorithm to solve the corresponding multi-objective optimization problem and obtain the optimal constellation parameters. With the augmentation of this LEO-NA constellation to the BeiDou-3 system, the average position dilution of precision (PDOP) values drop to 1.2-2.0 from 1.5-5.5, and the number of visible satellites increases from 8-10 to 13-18. By contrast, some realistic LEO constellations and constellations designed by other algorithms bring weaker improvements and cannot address the problem of high PDOP values in some regions. In addition, simulation results on standard test sets verify the excellent convergence and stability of the DMODE-EG algorithm.The online version contains supplementary material available at 10.1007/s10291-022-01366-5.

Related Organizations
Keywords

Original Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green