
arXiv: 2505.23597
The accurate semantic segmentation of tree crowns within remotely sensed data is crucial for scientific endeavours such as forest management, biodiversity studies, and carbon sequestration quantification. However, precise segmentation remains challenging due to complexities in the forest canopy, including shadows, intricate backgrounds, scale variations, and subtle spectral differences among tree species. Compared to the traditional methods, Deep Learning models improve accuracy by extracting informative and discriminative features, but often fall short in capturing the aforementioned complexities. To address these challenges, we propose PerceptiveNet, a novel model incorporating a Logarithmic Gabor-parameterised convolutional layer with trainable filter parameters, alongside a backbone that extracts salient features while capturing extensive context and spatial information through a wider receptive field. We investigate the impact of Log-Gabor, Gabor, and standard convolutional layers on semantic segmentation performance through extensive experimentation. Additionally, we conduct an ablation study to assess the contributions of individual layers and their combinations to overall model performance, and we evaluate PerceptiveNet as a backbone within a novel hybrid CNN-Transformer model. Our results outperform state-of-the-art models, demonstrating significant performance improvements on a tree crown dataset while generalising across domains, including two benchmark aerial scene semantic segmentation datasets with varying complexities.
Accepted for publication at the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) EarthVision
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
