Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Nanoarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Nano
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long-Range Metal–Sorbent Interactions Determine CO2 Capture and Conversion in Dual-Function Materials

Authors: Shradha Sapru; Kelle D. Hart; Chengshuang Zhou; Gennaro Liccardo; Jinwon Oh; Margaret J. Hollobaugh; Jorge Osio-Norgaard; +3 Authors

Long-Range Metal–Sorbent Interactions Determine CO2 Capture and Conversion in Dual-Function Materials

Abstract

Carbon capture and utilization involve multiple energy- and cost-intensive steps. Dual-function materials (DFMs) can reduce these demands by coupling CO2 adsorption and conversion into a single material with two functionalities: a sorbent phase and a metal for catalytic CO2 conversion. The role of metal catalysts in the conversion process seems salient from previous work, but the underlying mechanisms remain elusive and deserve deeper investigation to achieve maximum utilization of the two phases. Here, preformed colloidal Ru nanoparticles were deposited onto a "NaOx"/Al2O3 sorbent to prepare prototypical DFMs with controlled phases for CO2 capture and hydrogenation to CH4. Ru addition was found to double the high-temperature CO2 adsorption capacity by activating the "NaOx"/Al2O3 sorbent phase during a reductive pretreatment step. Most importantly, low Ru loadings were sufficient to ensure maximum CO2 adsorption and conversion. This was attributed to the key role of the metal-sorbent interactions, wherein Ru was required to hydrogenate strongly bound CO2 on the "NaOx"/Al2O3 sorbent to CH4 via the H2 activated on Ru. This interaction facilitated rate-determining carbonate migration and subsequent hydrogenation at the metal-sorbent interface. Overall, Ru controlled the CO2 hydrogenation reaction rate, while the "NaOx"/Al2O3 sorbent dictated the CO2 uptake capacity. By controlling metal-sorbent interactions at the molecular level, we demonstrate the critical role of the two phases and their synergy, facilitating the design of DFMs with maximum CO2 capture and conversion efficiency.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!