
As an important aspect of reliability theory, availability has now been considered a very meaningful design criterion of repairable system. This paper investigates the availability evaluation and design optimization of the multi-state k-out-of-n: G systems considering random weight threshold. The system availability is evaluated by extending the recursive algorithm (RA) and universal generating function (UGF) technique. Based on the traditional recursive algorithm, the total probability theorem is used to solve the discrete random weight threshold. Another better UGF method combines a new stochastic joint operator, which is suitable for both continuous and discrete random weight thresholds. Furthermore, we constructed two system design optimization models under availability or cost constraint respectively, and genetic algorithm (GA) programming can be applied to obtain the optimal state probability distribution and weight distribution of multi-state components of the suggested system. Finally, through numerical examples, the flexibility and effectiveness of the proposed methods for design optimization are demonstrated. In addition, two evaluation methods are compared to show that the customized UGF method features higher generality than RA in the case of continuous stochastic weight threshold, and higher operational efficiency in the case of increasing component quantity and state. The results can be helpful for engineers to optimize the design of complex systems.
universal generating function, recursive algorithm, availability, Multi-state k-out-of-n: G system, design optimization, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
universal generating function, recursive algorithm, availability, Multi-state k-out-of-n: G system, design optimization, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
