Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Communications
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TDOA-Based Joint Synchronization and Localization Algorithm for Asynchronous Wireless Sensor Networks

Authors: Tan Wang; Hui Xiong; Hong Ding; Linhua Zheng;

TDOA-Based Joint Synchronization and Localization Algorithm for Asynchronous Wireless Sensor Networks

Abstract

This paper presents a joint synchronization and localization algorithm based on the time-difference-of-arrival (TDOA) for asynchronous Wireless Sensor Networks (WSNs), where the positions of anchors are relatively fixed but unknown. To obtain time synchronization and anchor positions, each anchor broadcasts signals periodically, while other anchors receive the broadcasting signals and stamp times-of-arrival (TOAs). Based on these TOAs, we estimate the internal clock parameters and anchor positions in three steps: least square estimation (LSE) of the relative clock skew based on TDOAs, maximum likelihood localization (MLE) of anchors using biased time of flight (TOF), and LSE estimation of relative clock offsets. Anchor pairs stamp the TDOAs when a tag (a wireless sensor node that requires localization) transmits a signal. The biased TDOAs, due to asynchronous local clocks, are compensated by relative clock offset estimation. The maximum likelihood estimation is used for the tag localization based on the Gaussian noise model. We evaluate the performance of the proposed synchronization and localization algorithm using the Cramer-Rao lower bound (CRLB). Simulations are carried out to verify the validity of the algorithm in this paper.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!