Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neuroscie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neuroscience Methods
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
ZENODO
Article . 2022
Data sources: Datacite
ZENODO
Article . 2022
Data sources: Datacite
ZENODO
Article . 2022
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative analysis of spectral and temporal combinations in CSP-based methods for decoding hand motor imagery tasks

Authors: Cristian Felipe, Blanco-Diaz; Javier M, Antelis; Andrés Felipe, Ruiz-Olaya;

Comparative analysis of spectral and temporal combinations in CSP-based methods for decoding hand motor imagery tasks

Abstract

Abstract Background A widely used paradigm for brain-computer interfaces (BCI) is based on the detection of event-related (des)synchronization (ERD/S) in response to hand motor imagery (MI) tasks. The common spatial pattern (CSP) has been recognized as a powerful algorithm to design spatial filters for ERD/ERS detection. However, a limitation of CSP focus on identification only of discriminative spatial information but not the spectral one. New method An open problem remains in literature related to extracting the most discriminative brain patterns in MI-based BCIs using an optimal time segment and spectral information that accounts for intersubject variability. In recent years, different variants of CSP-based methods have been proposed to address the problem of decoding motor imagery tasks under the intersubject variability of frequency bands related to ERD/ERS events, including Filter Bank Common Spatial Patterns (FBCSP) and Filter Bank Common Spatio-Spectral Patterns (FBCSSP). Comparison with existing methods We performed a comparative study of different combinations of time segments and filter banks for three methods (CSP, FBCSP, and FBCSSP) to decode hand (right and left) motor imagery tasks using two different EEG datasets (Gigascience and BCI IVa competition). Results The best configuration corresponds to a filter bank with 3 filters (8–15 Hz, 15–22 Hz and 22–29 Hz) using a time window of 1.5 s after the trigger, which provide accuracies of approximately 74% and an estimated ITRs of approximately 7 bits/min. Conclusion Discriminative information in time and spectral domains could be obtained using a convenient filter bank and a time segment configuration, to enhance the classification rate and ITR for detection of hand motor imagery tasks with CSP-related methods, to be used in the implementation of a real-time BCI system.

IMPORTANT NOTE: This is the author’s version of a work that was accepted for publication in Journal of Neuroscience Methods. The final version can be found at https://doi.org/10.1016/j.jneumeth.2022.109495 © Elsevier 2022. © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords

Common Spatial Patterns, Brain, Electroencephalography, Signal Processing, Computer-Assisted, Event Related (Des) synchronization, Motor imagery, Brain-Computer Interfaces, Imagination, Algorithms, Filter Bank

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!