
In this work, we concentrate on the detection of anomalous behaviors in systems operating in the physical world and for which it is usually not possible to have a complete set of all possible anomalies in advance. We present a data augmentation and retraining approach based on adversarial learning for improving anomaly detection. In particular, we first define a method for generating adversarial examples for anomaly detectors based on Hidden Markov Models (HMMs). Then, we present a data augmentation and retraining technique that uses these adversarial examples to improve anomaly detection performance. Finally, we evaluate our adversarial data augmentation and retraining approach on four datasets showing that it achieves a statistically significant performance improvement and enhances the robustness to adversarial attacks. Key differences from the state-of-the-art on adversarial data augmentation are the focus on multivariate time series (as opposed to images), the context of one-class classification (in contrast to standard multi-class classification), and the use of HMMs (in contrast to neural networks).
Adversarial learning, anomaly detection, cyber-physical systems, data augmentation, HMMs, robotic systems
Adversarial learning, anomaly detection, cyber-physical systems, data augmentation, HMMs, robotic systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
