Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Cybernetics
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Zonotopic Distributed Fusion Over Binary Sensor Networks With Bit Rate Allocation: A Coding–Decoding Approach

Authors: Lan Lan; Guoliang Wei; Derui Ding; Jiayi Zhang;

Zonotopic Distributed Fusion Over Binary Sensor Networks With Bit Rate Allocation: A Coding–Decoding Approach

Abstract

In this article, the zonotopic distributed fusion estimation problem is investigated for a class of general nonlinear systems over binary sensor networks subject to unknown-but-bounded (UBB) noises. The network communication from nodes to the fusion center is confined to the limited bit rate. To alleviate the impact from less measurement information of the binary sensor, a modified innovation is constructed to improve the estimation accuracy. Then, a novel coding-decoding approach is proposed to ensure that the decoder has the ability to decode information from each node. Based on the matrix weighting fusion method, a distributed fusion algorithm is put forward under the zonotopic set-membership filtering framework, and the F-radius of the local zonotopic sets are derived and minimized by selecting the filtering gain parameters. Moreover, the bit rate allocation scheme and the weighting coefficients are determined by resolving two optimization problems. In addition, a sufficient condition is established to guarantee the uniform boundedness of the F-radius of the fused zonopotic. Finally, the ballistic object tracking systems is utilized to illustrate the availability of the presented algorithm.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!