
Channel modeling of wireless communications from unmanned aerial vehicles (UAVs) is an emerging research challenge. In this paper, we propose a solution to this issue by applying a new framework for the prediction of received signal strength (RSS) in mobile communications based on artificial neural networks (ANNs). The experimental data measurements are taken with a UAV at different altitudes. We apply several evolutionary algorithms (EAs) in conjunction with the Levenberg–Marquardt (LM) backpropagation algorithm in order to train different ANNs and in particular the L-SHADE algorithm, which self-adapts control parameters and dynamically adjusts population size. Five new hybrid training methods are designed by combining LM with self-adaptive differential evolution (DE) strategies. These new training methods obtain better performance to ANN weight optimization than the original LM method. The received results are compared with the real values using representative ANN performance indices and exhibit satisfactory accuracy.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
