Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Siirt University Ins...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/qd...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/qb...
Other literature type . 2023
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Caputo-Fabrizio fractional-order cholera model and its sensitivity analysis

نموذج Caputo - Fabrizio للترتيب التجزيئي للكوليرا وتحليل حساسيته
Authors: Idris Ahmed; Ali Akgül; Fahd Jarad; Poom Kumam; Kamsing Nonlaopon;

A Caputo-Fabrizio fractional-order cholera model and its sensitivity analysis

Abstract

In recent years, the availability of advanced computational techniques has led to a growing emphasis on fractional-order derivatives. This development has enabled researchers to explore the intricate dynamics of various biological models by employing fractional-order derivatives instead of traditional integer-order derivatives. This paper proposes a Caputo-Fabrizio fractional-order cholera epidemic model. Fixed-point theorems are utilized to investigate the existence and uniqueness of solutions. A recent and effective numerical scheme is employed to demonstrate the model's complex behaviors and highlight the advantages of fractional-order derivatives. Additionally, a sensitivity analysis is conducted to identify the most influential parameters.

Keywords

Economics, Bioinformatics and Computational Biology, Fractional Order Control, Biyolojik Matematik, Mathematical analysis, numerical simulations, Engineering, Cholera, Health Sciences, FOS: Mathematics, Anomalous Diffusion Modeling and Analysis, Order (exchange), Analysis and Design of Fractional Order Control Systems, Biological Mathematics, Electronic engineering, Cholera;mathematical model;fixed point theorems;sensitivity analysis;numerical simulations, Mathematical optimization, Public Health, Environmental and Occupational Health, Fractional calculus, Biyoinformatik ve Hesaplamalı Biyoloji, Applied mathematics, Computer science, fixed point theorems, Sensitivity (control systems), Programming language, Fractional Derivatives, Control and Systems Engineering, Modeling and Simulation, Disease Transmission and Population Dynamics, Physical Sciences, Medicine, Integer (computer science), Uniqueness, Sensitivity analysis, mathematical model, Mathematics, Finance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green