
handle: 11568/466670
The paper introduces a robust clustering algorithm that can automatically determine the unknown cluster number from noisy data without any a-priori information. We show how our clustering algorithm can be derived from a general learning theory, named CoRe learning, that models a cortical memory mechanism called repetition suppression. Moreover, we describe CoRe clustering relationships with Rival Penalized Competitive Learning (RPCL), showing how CoRe extends this model by strengthening the rival penalization estimation by means of robust loss functions. Finally, we present the results of simulations concerning the unsupervised segmentation of noisy images.
QUANTIZATION
QUANTIZATION
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
