
Conventional robot programming methods are not suited for non-experts to intuitively teach robots new tasks. For this reason, the potential of collaborative robots for production cannot yet be fully exploited. In this work, we propose an active learning framework, in which the robot and the user collaborate to incrementally program a complex task. Starting with a basic model, the robot’s task knowledge can be extended over time if new situations require additional skills. An on-line anomaly detection algorithm therefore automatically identifies new situations during task execution by monitoring the deviation between measured- and commanded sensor values. The robot then triggers a teaching phase, in which the user decides to either refine an existing skill or demonstrate a new skill. The different skills of a task are encoded in separate probabilistic models and structured in a high-level graph, guaranteeing robust execution and successful transition between skills. In the experiments, our approach is compared to two state-of-the-art Programming by Demonstration frameworks on a real system. Increased intuitiveness and task performance of the method can be shown, allowing shop-floor workers to program industrial tasks with our framework.
Human-Robot Collaboration, Intuitive Programming, Learning from Demonstration, Programming by Demonstration, Interactive Robot Learning, Institut für Robotik und Mechatronik (ab 2013)
Human-Robot Collaboration, Intuitive Programming, Learning from Demonstration, Programming by Demonstration, Interactive Robot Learning, Institut für Robotik und Mechatronik (ab 2013)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
