
For the decoding of a binary linear block code of minimal Hamming distance d over additive white Gaussian noise (AWGN) channels, a soft-decision decoder achieves bounded-distance (BD) decoding if its squared error-correction radius is equal to d. A Chase-like algorithm outputs the best (most likely) codeword in a list of candidates generated by a conventional algebraic binary decoder in a few trials. It is of interest to design Chase-like algorithms that achieve BD decoding with as least trials as possible. In this paper, we show that Chase-like algorithms can achieve BD decoding with only O(d 1/2+epsiv) trials for any given positive number epsiv.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
