Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Synthetic and System...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Synthetic and Systems Biotechnology
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Highly efficient genome editing in Bacillus subtilis via miniature DNA nucleases IscB

Authors: Jie Gao; Hengyi Wang; Jingtao Sun; Hongjie Tang; Yuhan Yang; Qi Li;

Highly efficient genome editing in Bacillus subtilis via miniature DNA nucleases IscB

Abstract

Existing CRISPR-based genome editing techniques for Bacillus subtilis (B. subtilis) are limited due to the large size of the cas gene. IscB, a recently reported DNA nuclease, is one-third the size of Cas9, making it a potential tool for genome editing; however, its application in B. subtilis remains unexplored. In this study, two IscB and enhanced IscB (enIscB)-based genome editing systems, named pBsuIscB and pBsuenIscB were established in B. subtilis SCK6, and their deletion efficiencies ranging from 13.3 % to 100 %. Compared to the pBsuIscB system, the pBsuenIscB system showed higher deletion efficiency, inducing the deletion of a large genomic fragment with a single ωRNA. Additionally, the pBsuenIscB system could integrate both single-copy and multi-copy mCherry genes in the B. subtilis SCK6 genome. Lastly, the pBsuenIscB system could efficiently conduct a second round of genome editing in B. subtilis SCK6. This study indicates that IscB can be used for genome editing in B. subtilis, enabling the efficient construction of engineered B. subtilis strains for large-scale biomolecule production.

Keywords

QH301-705.5, IscB, Large genomic fragment deletion, Gene integration, Original Research Article, Biology (General), TP248.13-248.65, Bacillus subtilis, Genome editing, Biotechnology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold