
arXiv: 2506.06810
Understanding the interactions between cells and the extracellular matrix (ECM) during collective cell invasion is crucial for advancements in tissue engineering, cancer therapies, and regenerative medicine. This study focuses on the roles of contact guidance and ECM remodelling in directing cell behaviour, with a particular emphasis on exploring how differences in cell phenotype impact collective cell invasion. We present a computationally tractable two-dimensional hybrid model of collective cell migration within the ECM, where cells are modelled as individual entities and collagen fibres as a continuous tensorial field. Our model incorporates random motility, contact guidance, cell-cell adhesion, volume filling, and the dynamic remodelling of collagen fibres through cellular secretion and degradation. Through a comprehensive parameter sweep, we provide valuable insights into how differences in the cell phenotype, in terms of the ability of the cell to migrate, secrete, degrade, and respond to contact guidance cues from the ECM, impacts the characteristics of collective cell invasion.
36 pages, 6 figures
FOS: Biological sciences, Cell Behavior (q-bio.CB), Cell Behavior, Tissues and Organs, Tissues and Organs (q-bio.TO)
FOS: Biological sciences, Cell Behavior (q-bio.CB), Cell Behavior, Tissues and Organs, Tissues and Organs (q-bio.TO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
