
We propose a new algorithm for recovering both complex field (phase and amplitude) and source distribution (illumination spatial coherence) from a stack of intensity images captured through focus. The joint recovery is formulated as a nonlinear least-square-error optimization problem, which is solved iteratively by a modified Gauss–Newton method. We derive the gradient and Hessian of the cost function and show that our second-order optimization approach outperforms previously proposed phase retrieval algorithms, for datasets taken with both coherent and partially coherent illumination. The method is validated experimentally in a commercial microscope with both Kohler illumination and a programmable light-emitting diode dome.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
