Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Split Fast Fourier Transform Algorithm for Block Toeplitz Matrix-Vector Multiplication

Authors: Alexandre Siron; Sean Molesky;

A Split Fast Fourier Transform Algorithm for Block Toeplitz Matrix-Vector Multiplication

Abstract

Numeric modeling of electromagnetics and acoustics frequently entails matrix-vector multiplication with block Toeplitz structure. When the corresponding block Toeplitz matrix is not highly sparse, e.g. when considering the electromagnetic Green function in a spatial basis, such calculations are often carried out by performing a multilevel embedding that gives the matrix a fully circulant form. While this transformation allows the associated matrix-vector multiplication to be computed via Fast Fourier Transforms (FFTs) and diagonal multiplication, generally leading to dramatic performance improvements compared to naive multiplication, it also adds unnecessary information that increases memory consumption and reduces computational efficiency. As an improvement, we propose a lazy embedding, eager projection, algorithm that for dimensionality $d$, asymptotically reduces the number of needed computations $\propto d/ \left(2 - 2^{-d+1}\right)$ and peak memory usage $\propto 2/\left((d+1)2^{-d} + 1\right)$, generally, and $\propto\left(2^{d} + 1\right)/\left(d +2\right)$ for a fully symmetric or skew-symmetric systems. The structure of the algorithm suggests several simple approaches for parallelization of large block Toeplitz matrix-vector products across multiple devices and adds flexibility in memory and task management.

6 pages, 3 figures, 1 table

Keywords

FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), 65-02, 65-04

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green