Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2025
Data sources: Lirias
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Sensors Journal
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data-Efficient Tactile Sensing With Electrical Impedance Tomography

Authors: Huazhi Dong; Ronald Bingnan Liu; Leo Micklem; Sharel Peisan E; Francesco Giorgio-Serchi; Yunjie Yang;

Data-Efficient Tactile Sensing With Electrical Impedance Tomography

Abstract

Electrical Impedance Tomography (EIT)-inspired tactile sensors are gaining attention in robotic tactile sensing due to their cost-effectiveness, safety, and scalability with sparse electrode configurations. This paper presents a data augmentation strategy for learning-based tactile reconstruction that amplifies the original single-frame signal measurement into 32 distinct, effective signal data for training. This approach supplements uncollected conditions of position information, resulting in more accurate and high-resolution tactile reconstructions. Data augmentation for EIT significantly reduces the required EIT measurements and achieves promising performance with even limited samples. Simulation results show that the proposed method improves the correlation coefficient by over 12% and reduces the relative error by over 21% under various noise levels. Furthermore, we demonstrate that a standard deep neural network (DNN) utilizing the proposed data augmentation reduces the required data down to 1/31 while achieving a similar tactile reconstruction quality. Real-world tests further validate the approach's effectiveness on a flexible EIT-based tactile sensor. These results could help address the challenge of training tactile sensing networks with limited available measurements, improving the accuracy and applicability of EIT-based tactile sensing systems.

Related Organizations
Keywords

FOS: Computer and information sciences, Technology, Science & Technology, Data augmentation, Physics, 0205 Optical Physics, deep learning, Engineering, Electrical & Electronic, robotic perception, tactile sensing, Physics, Applied, Analytical Chemistry, 0906 Electrical and Electronic Engineering, Computer Science - Robotics, Engineering, Physical Sciences, electrical impedance tomography (EIT), Instruments & Instrumentation, Robotics (cs.RO), SKIN, 0913 Mechanical Engineering, 40 Engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Related to Research communities