Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2019
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Machine Learning for Security and the Internet of Things: The Good, the Bad, and the Ugly

Authors: Fan Liang; William Grant Hatcher; Weixian Liao; Weichao Gao; Wei Yu;

Machine Learning for Security and the Internet of Things: The Good, the Bad, and the Ugly

Abstract

The advancement of the Internet of Things (IoT) has allowed for unprecedented data collection, automation, and remote sensing and actuation, transforming autonomous systems and bringing smart command and control into numerous cyber physical systems (CPS) that our daily lives depend on. Simultaneously, dramatic improvements in machine learning and deep neural network architectures have enabled unprecedented analytical capabilities, which we see in increasingly common applications and production technologies, such as self-driving vehicles and intelligent mobile applications. Predictably, these technologies have seen rapid adoption, which has left many implementations vulnerable to threats unforeseen or undefended against. Moreover, such technologies can be used by malicious actors, and the potential for cyber threats, attacks, intrusions, and obfuscation that are only just being considered, applied, and countered. In this paper, we consider the good, the bad, and the ugly use of machine learning for cybersecurity and CPS/IoT. In detail, we consider the numerous benefits (good use) that machine learning has brought, both in general, and specifically for security and CPS/IoT, such as the improvement of intrusion detection mechanisms and decision accuracy in CPS/IoT. More pressing, we consider the vulnerabilities of machine learning (bad use) from the perspectives of security and CPS/IoT, including the ways in which machine learning systems can be compromised, misled, and subverted at all stages of the machine learning life-cycle (data collection, pre-processing, training, validation, implementation, etc.). Finally, the most concerning, a growing trend has been the utilization of machine learning in the execution of cyberattacks and intrusions (ugly use). Thus, we consider existing mechanisms with the potential to improve target acquisition and existing threat patterns, as well as those that can enable novel attacks yet to be seen.

Related Organizations
Keywords

machine learning, applications, Internet of Things, Security, Electrical engineering. Electronics. Nuclear engineering, distributed environments, cyber physical systems, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 1%
Top 10%
Top 1%
gold