
A description of the technique for studying the dynamic structure of the near-Earth orbital space using machine learning technology is presented. Artificial neural networks were used to process time series associated with the evolution of resonance characteristics that determine the dynamic structure of the near-Earth region up to 120 thousand km along the semi-major axis. The number of the processed series has exceeded half a million, and their manual processing would be time consuming. The results of applying the technique to the analysis of the resonant structure of the selected area of space are presented.
околоземное космическое пространство, динамическая структура, искусственные нейронные сети
околоземное космическое пространство, динамическая структура, искусственные нейронные сети
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
