Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of Chaotic Maps for Global Optimization and a Hybrid Chaotic Pattern Search Algorithm for Optimizing the Reliability of a Bank

Authors: G. Sandhya Rani; Sarada Jayan; Bilal Alatas;

Analysis of Chaotic Maps for Global Optimization and a Hybrid Chaotic Pattern Search Algorithm for Optimizing the Reliability of a Bank

Abstract

Optimization is an imperative feature in almost all fields of Engineering, Economics, and Sciences. Due to the advent of high-end computers and the gradual increase in the complexity of optimization problems, algorithms for numerical optimization have been developed. Numerous existing numerical optimization algorithms suffer from premature convergence, poor local/global search abilities, and high computational complexity. A chaotic optimization algorithm and a chaotic map could help overcome most of these setbacks. This paper offers a detailed study and analysis of five chaotic maps used for global Optimization, namely Chebyshev, Cubic, ICMIC, Neuron, and Sine maps. This work also proposes a pioneering global optimization method, Hybrid Chaotic Pattern Search Algorithm (HCPSA), for finding the global minimum for multivariable unconstrained optimization problems. Numerical results over 12 benchmark functions and comparative results (comparison of accuracy and computational time) with some popular algorithms evidence the effectiveness of the proposed algorithm for higher dimensional non-linear functions. The efficient usage of chaotic maps has helped reduce the computational time to evaluate the optimum for higher dimensional non-linear functions. To showcase the use of HCPSA in a real-world problem, we have taken the problem of analyzing financial ratios for predicting bankruptcy. Banks predict bankruptcy from the start of their businesses to determine their financial stability. In this work, we initially perform Logistic Regression (LR) on the data obtained from the banks to get the reliability function with financial ratios as decision variables. After this, the function is maximized using HCPSA and a Chebyshev map. This methodology is beneficial for decision-makers within a bank to maximize the reliability of the financial ratios and, most essential, to protect the bank from disasters. Comparative results of reliability prediction using HCPSA and PSO and a non-parametric statistical test proves that the proposed algorithm is better in terms of accuracy.

Related Organizations
Keywords

reliability, pattern search, Global optimization, multi-variable optimization, Electrical engineering. Electronics. Nuclear engineering, financial ratios, chaotic maps, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold