Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Algorithm...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Algorithms
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simple Optimal Parallel Multiple Pattern Matching

Simple optimal parallel multiple pattern matching
Authors: S. Muthukrishnan 0001;

Simple Optimal Parallel Multiple Pattern Matching

Abstract

Summary: The author presents a simple algorithm for solving the multipattern matching problem with optimal speedup. The best-known deterministic parallel algorithm for this problem also provides optimal speedup, but relies crucially on a sophisticated construction of an automaton. Since then, Rabin has introduced a simple and elegant parallel algorithm [\textit{M. Rabin}, in Sequences '91: Methods in Communication, Security, and Computer Science (1993)]. This is a Monte Carlo algorithm based on finger-print functions and it, too, has optimal speedup. His algorithm simultaneously achieves the goals of optimal speedup of the deterministic algorithm, as well as the simplicity of the randomized Monte Carlo design cited above. His algorithm presented here can also be extended to solve the multidimensional pattern-matching problem, also with optimal speedup. Interestingly, the sequential version of the algorithm derived by slowing down our parallel design yields a new and simple (linear-time) algorithm for string matching. It is distinguished by its lack of dependence on failure-functions and its related automata-theoretic variants, periodicities, or special data structures, but essentially uses a carefully constructed divide-and-conquer approach. This approach is systematized by us into the shrink-and-spawn technique, with a range of applications in parallel string and pattern matching in a paper that appears in \textit{S. Muthukrishnan} and \textit{K. Palem} [in ``Proceedings 5th ACM Symp. on Parallel Algorithms and Architectures, 69-78 (1993)].

Related Organizations
Keywords

multipattern matching, Parallel algorithms in computer science

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!