Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Big Data Mining and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Big Data Mining and Analytics
Article . 2025 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Big Data Mining and Analytics
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RP-KGC: A Knowledge Graph Completion Model Integrating Rule-Based Knowledge for Pretraining and Inference

Authors: Wenying Guo; Shengdong Du; Jie Hu; Fei Teng; Yan Yang; Tianrui Li;

RP-KGC: A Knowledge Graph Completion Model Integrating Rule-Based Knowledge for Pretraining and Inference

Abstract

The objective of knowledge graph completion is to comprehend the structure and inherent relationships of domain knowledge, thereby providing a valuable foundation for knowledge reasoning and analysis. However, existing methods for knowledge graph completion face challenges. For instance, rule-based completion methods exhibit high accuracy and interpretability, but encounter difficulties when handling large knowledge graphs. In contrast, embedding-based completion methods demonstrate strong scalability and efficiency, but also have limited utilisation of domain knowledge. In response to the aforementioned issues, we propose a method of pre-training and inference for knowledge graph completion based on integrated rules. The approach combines rule mining and reasoning to generate precise candidate facts. Subsequently, a pre-trained language model is fine-tuned and probabilistic structural loss is incorporated to embed the knowledge graph. This enables the language model to capture more deep semantic information while the loss function reconstructs the structure of the knowledge graph. This enables the language model to capture more deep semantic information while the loss function reconstructs the structure of the knowledge graph. Extensive tests using various publicly accessible datasets have indicated that the suggested model performs better than current techniques in tackling knowledge graph completion problems.

Related Organizations
Keywords

bidirectional encoder representation from transforms (bert) fine-tuning, knowledge graph completion (kgc), Electronic computers. Computer science, QA75.5-76.95, knowledge graph embedding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold