
doi: 10.1109/78.324732
handle: 2027.42/85886
The expectation-maximization (EM) method can facilitate maximizing likelihood functions that arise in statistical estimation problems. In the classical EM paradigm, one iteratively maximizes the conditional log-likelihood of a single unobservable complete data space, rather than maximizing the intractable likelihood function for the measured or incomplete data. EM algorithms update all parameters simultaneously, which has two drawbacks: 1) slow convergence, and 2) difficult maximization steps due to coupling when smoothness penalties are used. The paper describes the space-alternating generalized EM (SAGE) method, which updates the parameters sequentially by alternating between several small hidden-data spaces defined by the algorithm designer. The authors prove that the sequence of estimates monotonically increases the penalized-likelihood objective, derive asymptotic convergence rates, and provide sufficient conditions for monotone convergence in norm. Two signal processing applications illustrate the method: estimation of superimposed signals in Gaussian noise, and image reconstruction from Poisson measurements. In both applications, the SAGE algorithms easily accommodate smoothness penalties and converge faster than the EM algorithms. >
Engineering, Biomedical Engineering
Engineering, Biomedical Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 794 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
