Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Software Practice an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Software Practice and Experience
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shimba—an environment for reverse engineering Java software systems

Shimba -- an environment for reverse engineering Java software systems
Authors: Systä, Tarja; Koskimies, Kai; Müller, Hausi;

Shimba—an environment for reverse engineering Java software systems

Abstract

AbstractShimba is a reverse engineering environment to support the understanding of Java software systems. Shimba integrates the Rigi and SCED tools to analyze and visualize the static and dynamic aspects of a subject system. The static software artifacts and their dependencies are extracted from Java byte code and viewed as directed graphs using the Rigi reverse engineering environment. The run‐time information is generated by running the target software under a customized SDK debugger. The generated information is viewed as sequence diagrams using the SCED tool. In SCED, statechart diagrams can be synthesized automatically from sequence diagrams, allowing the user to investigate the overall run‐time behavior of objects in the target system.Shimba provides facilities to manage the different diagrams and to trace artifacts and relations across views. In Shimba, SCED sequence diagrams are used to slice the static dependency graphs produced by Rigi. In turn, Rigi graphs are used to guide the generation of SCED sequence diagrams and to raise their level of abstraction. We show how the information exchange among the views enables goal‐driven reverse engineering tasks and aids the overall understanding of the target software system. The FUJABA software system serves as a case study to illustrate and validate the Shimba reverse engineering environment. Copyright © 2001 John Wiley & Sons, Ltd.

Keywords

SCED, Computing methodologies and applications, program comprehension, software reverse engineering, Theory of programming languages, reverse engineering environment, Rigi, Java

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!