Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Information Technolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Information Technology And Control
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Information Technology And Control
Article
License: CC BY
Data sources: UnpayWall
https://dx.doi.org/10.60692/3w...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/87...
Other literature type . 2021
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Big Data Full-Text Search Index Minimization Using Text Summarization

تقليل فهرس بحث النص الكامل للبيانات الضخمة باستخدام تلخيص النص
Authors: Waheed Iqbal; Waqas Ilyas Malik; Faisal Bukhari; Khaled Mellouli; Zubiar Nawaz;

Big Data Full-Text Search Index Minimization Using Text Summarization

Abstract

An efficient full-text search is achieved by indexing the raw data with an additional 20 to 30 percent storagecost. In the context of Big Data, this additional storage space is huge and introduces challenges to entertainfull-text search queries with good performance. It also incurs overhead to store, manage, and update the largesize index. In this paper, we propose and evaluate a method to minimize the index size to offer full-text searchover Big Data using an automatic extractive-based text summarization method. To evaluate the effectivenessof the proposed approach, we used two real-world datasets. We indexed actual and summarized datasets usingApache Lucene and studied average simple overlapping, Spearman’s rho correlation, and average rankingscore measures of search results obtained using different search queries. Our experimental evaluation showsthat automatic text summarization is an effective method to reduce the index size significantly. We obtained amaximum of 82% reduction in index size with 42% higher relevance of the search results using the proposedsolution to minimize the full-text index size.

Related Organizations
Keywords

FOS: Computer and information sciences, Web Data Extraction, FOS: Political science, Trajectory Data Mining and Analysis, Search engine indexing, FOS: Law, Automatic summarization, Web Data Extraction and Crawling Techniques, Big data, Context (archaeology), Artificial Intelligence, Information retrieval, Raw data, Data mining, Political science, Biology, Paleontology, Computer science, Programming language, Automatic Keyword Extraction from Textual Data, Top-k Query Processing, Overhead (engineering), World Wide Web, Data Records Mining, Operating system, Computer Science, Physical Sciences, Signal Processing, Information Retrieval, Relevance (law), Textual Data, Law, Information Systems, Index (typography)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold